Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 15: 1388947, 2024.
Article in English | MEDLINE | ID: mdl-38638439

ABSTRACT

Sepsis is a systemic inflammatory response to a severe, life-threatening infection with organ dysfunction. Although there is no effective treatment for this fatal illness, a deeper understanding of the pathophysiological basis of sepsis and its underlying mechanisms could lead to the development of new treatment approaches. Here, we demonstrate that the selective Bruton's tyrosine kinase (Btk) inhibitor acalabrutinib augments survival rates in a lipopolysaccharide (LPS)-induced septic model. Our in vitro and in vivo findings both indicate that acalabrutinib reduces IL-6 production specifically in marginal zone B (MZ B) cells rather than in macrophages. Furthermore, Btk-deficient MZ B cells exhibited suppressed LPS-induced IL-6 production in vitro. Nuclear factor-kappa B (NF-κB) signaling, which is the downstream signaling cascade of Toll-like receptor 4 (TLR4), was also severely attenuated in Btk-deficient MZ B cells. These findings suggest that Btk blockade may prevent sepsis by inhibiting IL-6 production in MZ B cells. In addition, although Btk inhibition may adversely affect B cell maturation and humoral immunity, antibody responses were not impaired when acalabrutinib was administered for a short period after immunization with T-cell-independent (TI) and T-cell-dependent (TD) antigens. In contrast, long-term administration of acalabrutinib slightly impaired humoral immunity. Therefore, these findings suggest that Btk inhibitors may be a potential option for alleviating endotoxic shock without compromising humoral immunity and emphasize the importance of maintaining a delicate balance between immunomodulation and inflammation suppression.


Subject(s)
Agammaglobulinaemia Tyrosine Kinase , B-Lymphocytes , Interleukin-6 , Shock, Septic , Animals , Mice , Agammaglobulinaemia Tyrosine Kinase/antagonists & inhibitors , Benzamides , Lipopolysaccharides/toxicity , NF-kappa B , Pyrazines , Shock, Septic/chemically induced , Shock, Septic/drug therapy , B-Lymphocytes/immunology
2.
J Biochem ; 170(4): 483-488, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34015095

ABSTRACT

Store-operated calcium entry (SOCE) is the process by which the emptying of endoplasmic reticulum (ER) Ca2+ stores causes an influx of Ca2+ across the plasma membrane (PM). It is the major Ca2+ influx pathway in nonexcitable cells and has a wide array of physiological functions. Upon store depletion, stromal interaction molecule 1 (STIM1), an ER calcium sensor relocates into discrete puncta at the ER-PM junction region, which results in the coupling of Ca2+ channels to initiate SOCE. However, the mechanism regulating STIM1 activity remains poorly understood. Here, we performed affinity purification of STIM1 and uncovered ER membrane protein complex 1 (EMC1) as an STIM1 binding partner. We showed that this interaction occurred in the ER through the intraluminal region of STIM1. After store depletion, EMC1 does not cluster adjacent to the PM, which suggests that it is distributed differently from STIM1. EMC1 knockdown with small interfering RNA resulted in a marked decrease in SOCE. Thus, these findings suggest that EMC1 functions as a positive regulator of SOCE.


Subject(s)
Calcium/metabolism , Endoplasmic Reticulum/metabolism , Membrane Proteins/metabolism , Stromal Interaction Molecule 1/metabolism , Calcium Channels/metabolism , Calcium Signaling , Cell Membrane/metabolism , Gene Knockdown Techniques/methods , HEK293 Cells , HeLa Cells , Humans , Membrane Proteins/genetics , Protein Binding , RNA, Small Interfering/genetics
3.
Sci Rep ; 11(1): 5524, 2021 03 09.
Article in English | MEDLINE | ID: mdl-33750849

ABSTRACT

The Cre/loxP system is a powerful tool for generating conditional gene knockout (KO) mice and elucidate gene function in vivo. CD19-Cre and Mb1-iCre transgenic mice are commonly used for generating B cell-specific KO mice and investigate the development, as well as the physiological and pathophysiological roles of B cells. However, the CD19-Cre line low efficiency and the Mb1-iCre line occasional ectopic recombination represent challenges for their use. Thus, we developed a CD19-codon-improved Cre (CD19-iCre) knock-in mouse with the T2A-iCre sequence inserted into the Cd19 locus, just before the stop codon. The CD19-iCre mice were compared with existing models, crossed with the Rosa26-EYFP reporter mice, and their recombination activity in B cells carrying different Cre alleles was assessed. CD19-iCre mice showed more effective Cre recombination in the early B cell developmental stages compared with the CD19-Cre mice. The efficiencies of the CD19-iCre and Mb1-iCre lines were similar; however, the B lineage-specific recombination was more stringent in the CD19-iCre line. Furthermore, the utility value of the CD19-iCre model was superior than that of the CD19-Cre mice regarding deletion efficiency in IL10-floxed mice. Thus, the CD19-iCre line is a valuable tool for highly efficient gene targeting specific to the B cell compartment.


Subject(s)
Antigens, CD19/genetics , B-Lymphocytes , Gene Targeting , Genetic Loci , Integrases , Animals , Mice, Knockout , Organ Specificity/genetics
4.
Clin Cancer Res ; 8(1): 287-92, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11801571

ABSTRACT

7-ethyl-10-[4-(1-piperidyl)-1-piperidyl] carbonyloxy-camptothecin, a topoisomerase I (topo I) inhibitor, is one of the most active agent against lung cancer, and its radiosensitizing effect has been reported recently. We evaluated a combination in vitro effect of irradiation and 7-ethyl-10-hydroxy-CPT (SN-38), an active metabolite of 7-ethyl-10-[4- (1-piperidyl)-1-piperidyl] carbonyloxy-camptothecin, on a human small cell lung cancer cell line (SBC-3) and its cisplatin-resistant subline (SBC-3/CDDP). Growth-inhibitory effects of irradiation with or without SN-38 were determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. A modified isobologram method was used to evaluate the treatment interaction. The combination of irradiation and SN-38 showed a synergistic inhibitory effect on the growth of SBC-3/CDDP despite its cross-resistance to irradiation and SN-38. In contrast, the same combination showed only an additive effect on the growth of parental SBC-3 cells. There was no significant difference in topo I protein expression between these two cell lines. In SBC-3 cells, topo I catalytic activity was suppressed by 4 Gy of irradiation, without a decrease of nuclear topo I protein, whereas the exposure of SBC-3 cells to 1 microM SN-38 subsequent to irradiation showed no remarkable additional effects on both topo I activity and protein content. On the other hand, in SBC-3/CDDP cells, topo I activity was unchanged by irradiation, but the subsequent exposure to SN-38 gave rise to a decrease in topo I activity, which was accompanied by a significant decrease in the topo I protein content (P = 0.02). These observations may indicate that SN-38 induces sequestration of topo I onto DNA in radiation-treated SBC-3/CDDP cells and suggest that the synergistic effect of irradiation and SN-38 in SBC-3/CDDP cells was considered attributable to DNA repair-related enhanced recruitment of topo I onto the damaged DNA.


Subject(s)
Antineoplastic Agents/therapeutic use , Camptothecin/therapeutic use , Carcinoma, Small Cell/therapy , Cisplatin/therapeutic use , Drug Resistance, Neoplasm , Enzyme Inhibitors/therapeutic use , Lung Neoplasms/therapy , Topoisomerase I Inhibitors , Tumor Cells, Cultured/radiation effects , Camptothecin/analogs & derivatives , Carcinoma, Small Cell/enzymology , Carcinoma, Small Cell/pathology , Cell Survival/drug effects , Cell Survival/radiation effects , Combined Modality Therapy , DNA Topoisomerases, Type I/metabolism , Drug Synergism , Formazans , Humans , Immunoblotting , Irinotecan , Lung Neoplasms/enzymology , Lung Neoplasms/pathology , Tetrazolium Salts , Tumor Cells, Cultured/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...